Monoidal categories

SMC(1)

A rough definition of a symmetric monoidal structure on a category \(\mathcal{C}\)

Linked by

Set as SMC(1)

Linked by

Exercise 4-48(1)

Check that monoidal categories generalize monoidal preorders: a monoidal preorder is a monoidal category \((P,I,\otimes)\) where \(P(p,q)\) has at most one element.

Solution(0)

TODO

Exercise 4-50(2)
Solution(1)
  1. \(False,\ 2\)

  2. \(True,\ -2\)

  3. \(5\)

  4. \(-5\)

  5. \(6\)

  6. \((2,-13)\) ... \(a\mapsto -2,\ b \mapsto 3,\ c\mapsto 2,\ d\mapsto -10,\ e\mapsto true,\ f\mapsto -13, g \mapsto 2\)

  7. \((-1,7)\) ... \(a\mapsto 2,\ b \mapsto 3,\ c \mapsto 2,\ d\mapsto 10,\ e\mapsto false, f\mapsto 7, g\mapsto -1\)